\(\int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx\) [54]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 36, antiderivative size = 118 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=-\frac {3 (2 A-3 B) c^2 x}{2 a}-\frac {3 (2 A-3 B) c^2 \cos (e+f x)}{2 a f}-\frac {a^2 (A-B) c^2 \cos ^5(e+f x)}{f (a+a \sin (e+f x))^3}-\frac {(2 A-3 B) c^2 \cos ^3(e+f x)}{2 f (a+a \sin (e+f x))} \]

[Out]

-3/2*(2*A-3*B)*c^2*x/a-3/2*(2*A-3*B)*c^2*cos(f*x+e)/a/f-a^2*(A-B)*c^2*cos(f*x+e)^5/f/(a+a*sin(f*x+e))^3-1/2*(2
*A-3*B)*c^2*cos(f*x+e)^3/f/(a+a*sin(f*x+e))

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {3046, 2938, 2758, 2761, 8} \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=-\frac {a^2 c^2 (A-B) \cos ^5(e+f x)}{f (a \sin (e+f x)+a)^3}-\frac {3 c^2 (2 A-3 B) \cos (e+f x)}{2 a f}-\frac {c^2 (2 A-3 B) \cos ^3(e+f x)}{2 f (a \sin (e+f x)+a)}-\frac {3 c^2 x (2 A-3 B)}{2 a} \]

[In]

Int[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^2)/(a + a*Sin[e + f*x]),x]

[Out]

(-3*(2*A - 3*B)*c^2*x)/(2*a) - (3*(2*A - 3*B)*c^2*Cos[e + f*x])/(2*a*f) - (a^2*(A - B)*c^2*Cos[e + f*x]^5)/(f*
(a + a*Sin[e + f*x])^3) - ((2*A - 3*B)*c^2*Cos[e + f*x]^3)/(2*f*(a + a*Sin[e + f*x]))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2758

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Dist[g^2*((p - 1)/(a*(m + p))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p,
 0] && IntegersQ[2*m, 2*p]

Rule 2761

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g*((g*Cos[e
 + f*x])^(p - 1)/(b*f*(p - 1))), x] + Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2), x], x] /; FreeQ[{a, b, e, f, g
}, x] && EqQ[a^2 - b^2, 0] && GtQ[p, 1] && IntegerQ[2*p]

Rule 2938

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p
 + 1))), x] + Dist[(a*d*m + b*c*(m + p + 1))/(a*b*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^
(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1] || ILtQ[Simplify[
m + p], 0]) && NeQ[2*m + p + 1, 0]

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \left (a^2 c^2\right ) \int \frac {\cos ^4(e+f x) (A+B \sin (e+f x))}{(a+a \sin (e+f x))^3} \, dx \\ & = -\frac {a^2 (A-B) c^2 \cos ^5(e+f x)}{f (a+a \sin (e+f x))^3}-\left (a (2 A-3 B) c^2\right ) \int \frac {\cos ^4(e+f x)}{(a+a \sin (e+f x))^2} \, dx \\ & = -\frac {a^2 (A-B) c^2 \cos ^5(e+f x)}{f (a+a \sin (e+f x))^3}-\frac {(2 A-3 B) c^2 \cos ^3(e+f x)}{2 f (a+a \sin (e+f x))}-\frac {1}{2} \left (3 (2 A-3 B) c^2\right ) \int \frac {\cos ^2(e+f x)}{a+a \sin (e+f x)} \, dx \\ & = -\frac {3 (2 A-3 B) c^2 \cos (e+f x)}{2 a f}-\frac {a^2 (A-B) c^2 \cos ^5(e+f x)}{f (a+a \sin (e+f x))^3}-\frac {(2 A-3 B) c^2 \cos ^3(e+f x)}{2 f (a+a \sin (e+f x))}-\frac {\left (3 (2 A-3 B) c^2\right ) \int 1 \, dx}{2 a} \\ & = -\frac {3 (2 A-3 B) c^2 x}{2 a}-\frac {3 (2 A-3 B) c^2 \cos (e+f x)}{2 a f}-\frac {a^2 (A-B) c^2 \cos ^5(e+f x)}{f (a+a \sin (e+f x))^3}-\frac {(2 A-3 B) c^2 \cos ^3(e+f x)}{2 f (a+a \sin (e+f x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 8.66 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.59 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=-\frac {c^2 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x))^2 \left (\cos \left (\frac {1}{2} (e+f x)\right ) (6 (2 A-3 B) (e+f x)+4 (A-3 B) \cos (e+f x)+B \sin (2 (e+f x)))+\sin \left (\frac {1}{2} (e+f x)\right ) (4 A (-8+3 e+3 f x)-2 B (-16+9 e+9 f x)+4 (A-3 B) \cos (e+f x)+B \sin (2 (e+f x)))\right )}{4 a f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^4 (1+\sin (e+f x))} \]

[In]

Integrate[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^2)/(a + a*Sin[e + f*x]),x]

[Out]

-1/4*(c^2*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^2*(Cos[(e + f*x)/2]*(6*(2*A - 3*B)*(e + f*
x) + 4*(A - 3*B)*Cos[e + f*x] + B*Sin[2*(e + f*x)]) + Sin[(e + f*x)/2]*(4*A*(-8 + 3*e + 3*f*x) - 2*B*(-16 + 9*
e + 9*f*x) + 4*(A - 3*B)*Cos[e + f*x] + B*Sin[2*(e + f*x)])))/(a*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^4*(1
+ Sin[e + f*x]))

Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.80

method result size
parallelrisch \(\frac {4 c^{2} \left (\frac {\left (-A +3 B \right ) \cos \left (2 f x +2 e \right )}{8}-\frac {B \sin \left (3 f x +3 e \right )}{32}+\frac {\left (-3 f x A +\frac {9}{2} f x B -5 A +7 B \right ) \cos \left (f x +e \right )}{4}+\left (A -\frac {33 B}{32}\right ) \sin \left (f x +e \right )-\frac {9 A}{8}+\frac {11 B}{8}\right )}{a f \cos \left (f x +e \right )}\) \(94\)
derivativedivides \(\frac {2 c^{2} \left (-\frac {-\frac {B \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2}+\left (A -3 B \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+\frac {B \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2}+A -3 B}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2}}-\frac {3 \left (2 A -3 B \right ) \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2}-\frac {4 A -4 B}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )}{f a}\) \(119\)
default \(\frac {2 c^{2} \left (-\frac {-\frac {B \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2}+\left (A -3 B \right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )+\frac {B \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2}+A -3 B}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2}}-\frac {3 \left (2 A -3 B \right ) \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2}-\frac {4 A -4 B}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )}{f a}\) \(119\)
risch \(-\frac {3 c^{2} x A}{a}+\frac {9 c^{2} x B}{2 a}-\frac {c^{2} {\mathrm e}^{i \left (f x +e \right )} A}{2 a f}+\frac {3 c^{2} {\mathrm e}^{i \left (f x +e \right )} B}{2 a f}-\frac {c^{2} {\mathrm e}^{-i \left (f x +e \right )} A}{2 a f}+\frac {3 c^{2} {\mathrm e}^{-i \left (f x +e \right )} B}{2 a f}-\frac {8 c^{2} A}{f a \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}+\frac {8 c^{2} B}{f a \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}-\frac {B \,c^{2} \sin \left (2 f x +2 e \right )}{4 a f}\) \(179\)
norman \(\frac {\frac {\left (6 A \,c^{2}-4 B \,c^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{a f}+\frac {\left (8 A \,c^{2}-9 B \,c^{2}\right ) \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}+\frac {\left (20 A \,c^{2}-15 B \,c^{2}\right ) \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}+\frac {\left (22 A \,c^{2}-20 B \,c^{2}\right ) \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {2 A \,c^{2}-5 B \,c^{2}}{a f}-\frac {3 \left (2 A -3 B \right ) c^{2} x}{2 a}-\frac {\left (2 A \,c^{2}-3 B \,c^{2}\right ) \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {\left (4 A \,c^{2}-8 B \,c^{2}\right ) \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a f}-\frac {3 \left (2 A -3 B \right ) c^{2} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2 a}-\frac {9 \left (2 A -3 B \right ) c^{2} x \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}-\frac {9 \left (2 A -3 B \right ) c^{2} x \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}-\frac {9 \left (2 A -3 B \right ) c^{2} x \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}-\frac {9 \left (2 A -3 B \right ) c^{2} x \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}-\frac {3 \left (2 A -3 B \right ) c^{2} x \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}-\frac {3 \left (2 A -3 B \right ) c^{2} x \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) \left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{3}}\) \(441\)

[In]

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2/(a+a*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

4*c^2*(1/8*(-A+3*B)*cos(2*f*x+2*e)-1/32*B*sin(3*f*x+3*e)+1/4*(-3*f*x*A+9/2*f*x*B-5*A+7*B)*cos(f*x+e)+(A-33/32*
B)*sin(f*x+e)-9/8*A+11/8*B)/a/f/cos(f*x+e)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.52 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {B c^{2} \cos \left (f x + e\right )^{3} - 3 \, {\left (2 \, A - 3 \, B\right )} c^{2} f x - 2 \, {\left (A - 3 \, B\right )} c^{2} \cos \left (f x + e\right )^{2} - 8 \, {\left (A - B\right )} c^{2} - {\left (3 \, {\left (2 \, A - 3 \, B\right )} c^{2} f x + {\left (10 \, A - 13 \, B\right )} c^{2}\right )} \cos \left (f x + e\right ) - {\left (3 \, {\left (2 \, A - 3 \, B\right )} c^{2} f x + B c^{2} \cos \left (f x + e\right )^{2} + {\left (2 \, A - 5 \, B\right )} c^{2} \cos \left (f x + e\right ) - 8 \, {\left (A - B\right )} c^{2}\right )} \sin \left (f x + e\right )}{2 \, {\left (a f \cos \left (f x + e\right ) + a f \sin \left (f x + e\right ) + a f\right )}} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2/(a+a*sin(f*x+e)),x, algorithm="fricas")

[Out]

1/2*(B*c^2*cos(f*x + e)^3 - 3*(2*A - 3*B)*c^2*f*x - 2*(A - 3*B)*c^2*cos(f*x + e)^2 - 8*(A - B)*c^2 - (3*(2*A -
 3*B)*c^2*f*x + (10*A - 13*B)*c^2)*cos(f*x + e) - (3*(2*A - 3*B)*c^2*f*x + B*c^2*cos(f*x + e)^2 + (2*A - 5*B)*
c^2*cos(f*x + e) - 8*(A - B)*c^2)*sin(f*x + e))/(a*f*cos(f*x + e) + a*f*sin(f*x + e) + a*f)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2365 vs. \(2 (99) = 198\).

Time = 2.03 (sec) , antiderivative size = 2365, normalized size of antiderivative = 20.04 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**2/(a+a*sin(f*x+e)),x)

[Out]

Piecewise((-6*A*c**2*f*x*tan(e/2 + f*x/2)**5/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*ta
n(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 6*A*c**2*f*x*tan(e/2 + f*x/2
)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/
2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 12*A*c**2*f*x*tan(e/2 + f*x/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f
*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f)
 - 12*A*c**2*f*x*tan(e/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 +
f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 6*A*c**2*f*x*tan(e/2 + f*x/2)/(2*a*f
*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a
*f*tan(e/2 + f*x/2) + 2*a*f) - 6*A*c**2*f*x/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan
(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 16*A*c**2*tan(e/2 + f*x/2)**4
/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**
2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 4*A*c**2*tan(e/2 + f*x/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2
+ f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 36*A*c
**2*tan(e/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4
*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) - 4*A*c**2*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)
**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/
2) + 2*a*f) - 20*A*c**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4
*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 9*B*c**2*f*x*tan(e/2 + f*x/2)**5/(2*a*f*tan(e/2 +
 f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2
 + f*x/2) + 2*a*f) + 9*B*c**2*f*x*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 +
 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 18*B*c**2*f*x*tan(e
/2 + f*x/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(
e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 18*B*c**2*f*x*tan(e/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)*
*5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2
) + 2*a*f) + 9*B*c**2*f*x*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(
e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 9*B*c**2*f*x/(2*a*f*tan(e/2 +
f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2
+ f*x/2) + 2*a*f) + 18*B*c**2*tan(e/2 + f*x/2)**4/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a
*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 14*B*c**2*tan(e/2 + f*x
/2)**3/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*
x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 42*B*c**2*tan(e/2 + f*x/2)**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*t
an(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) +
 10*B*c**2*tan(e/2 + f*x/2)/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3
 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f) + 28*B*c**2/(2*a*f*tan(e/2 + f*x/2)**5 + 2*a*f*
tan(e/2 + f*x/2)**4 + 4*a*f*tan(e/2 + f*x/2)**3 + 4*a*f*tan(e/2 + f*x/2)**2 + 2*a*f*tan(e/2 + f*x/2) + 2*a*f),
 Ne(f, 0)), (x*(A + B*sin(e))*(-c*sin(e) + c)**2/(a*sin(e) + a), True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 608 vs. \(2 (112) = 224\).

Time = 0.31 (sec) , antiderivative size = 608, normalized size of antiderivative = 5.15 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=\frac {B c^{2} {\left (\frac {\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {5 \, \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + 4}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {2 \, a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {2 \, a \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {a \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {a \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}} + \frac {3 \, \arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a}\right )} - 2 \, A c^{2} {\left (\frac {\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 2}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {\arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a}\right )} + 4 \, B c^{2} {\left (\frac {\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 2}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}} + \frac {\arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a}\right )} - 4 \, A c^{2} {\left (\frac {\arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a} + \frac {1}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}}\right )} + 2 \, B c^{2} {\left (\frac {\arctan \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{a} + \frac {1}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}}\right )} - \frac {2 \, A c^{2}}{a + \frac {a \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}}}{f} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2/(a+a*sin(f*x+e)),x, algorithm="maxima")

[Out]

(B*c^2*((sin(f*x + e)/(cos(f*x + e) + 1) + 5*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 3*sin(f*x + e)^3/(cos(f*x +
 e) + 1)^3 + 3*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 4)/(a + a*sin(f*x + e)/(cos(f*x + e) + 1) + 2*a*sin(f*x +
 e)^2/(cos(f*x + e) + 1)^2 + 2*a*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + a*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 +
 a*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) + 3*arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a) - 2*A*c^2*((sin(f*x + e
)/(cos(f*x + e) + 1) + sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 2)/(a + a*sin(f*x + e)/(cos(f*x + e) + 1) + a*sin
(f*x + e)^2/(cos(f*x + e) + 1)^2 + a*sin(f*x + e)^3/(cos(f*x + e) + 1)^3) + arctan(sin(f*x + e)/(cos(f*x + e)
+ 1))/a) + 4*B*c^2*((sin(f*x + e)/(cos(f*x + e) + 1) + sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 2)/(a + a*sin(f*x
 + e)/(cos(f*x + e) + 1) + a*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a*sin(f*x + e)^3/(cos(f*x + e) + 1)^3) + ar
ctan(sin(f*x + e)/(cos(f*x + e) + 1))/a) - 4*A*c^2*(arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a + 1/(a + a*sin(f
*x + e)/(cos(f*x + e) + 1))) + 2*B*c^2*(arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a + 1/(a + a*sin(f*x + e)/(cos
(f*x + e) + 1))) - 2*A*c^2/(a + a*sin(f*x + e)/(cos(f*x + e) + 1)))/f

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.33 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=-\frac {\frac {3 \, {\left (2 \, A c^{2} - 3 \, B c^{2}\right )} {\left (f x + e\right )}}{a} + \frac {16 \, {\left (A c^{2} - B c^{2}\right )}}{a {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}} - \frac {2 \, {\left (B c^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 2 \, A c^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 6 \, B c^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - B c^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 2 \, A c^{2} + 6 \, B c^{2}\right )}}{{\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}^{2} a}}{2 \, f} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^2/(a+a*sin(f*x+e)),x, algorithm="giac")

[Out]

-1/2*(3*(2*A*c^2 - 3*B*c^2)*(f*x + e)/a + 16*(A*c^2 - B*c^2)/(a*(tan(1/2*f*x + 1/2*e) + 1)) - 2*(B*c^2*tan(1/2
*f*x + 1/2*e)^3 - 2*A*c^2*tan(1/2*f*x + 1/2*e)^2 + 6*B*c^2*tan(1/2*f*x + 1/2*e)^2 - B*c^2*tan(1/2*f*x + 1/2*e)
 - 2*A*c^2 + 6*B*c^2)/((tan(1/2*f*x + 1/2*e)^2 + 1)^2*a))/f

Mupad [B] (verification not implemented)

Time = 15.33 (sec) , antiderivative size = 241, normalized size of antiderivative = 2.04 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^2}{a+a \sin (e+f x)} \, dx=-\frac {\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (2\,A\,c^2-5\,B\,c^2\right )+10\,A\,c^2-14\,B\,c^2+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (2\,A\,c^2-7\,B\,c^2\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (8\,A\,c^2-9\,B\,c^2\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (18\,A\,c^2-21\,B\,c^2\right )}{f\,\left (a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5+a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4+2\,a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3+2\,a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+a\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+a\right )}-\frac {3\,c^2\,\mathrm {atan}\left (\frac {3\,c^2\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (2\,A-3\,B\right )}{6\,A\,c^2-9\,B\,c^2}\right )\,\left (2\,A-3\,B\right )}{a\,f} \]

[In]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^2)/(a + a*sin(e + f*x)),x)

[Out]

- (tan(e/2 + (f*x)/2)*(2*A*c^2 - 5*B*c^2) + 10*A*c^2 - 14*B*c^2 + tan(e/2 + (f*x)/2)^3*(2*A*c^2 - 7*B*c^2) + t
an(e/2 + (f*x)/2)^4*(8*A*c^2 - 9*B*c^2) + tan(e/2 + (f*x)/2)^2*(18*A*c^2 - 21*B*c^2))/(f*(a + a*tan(e/2 + (f*x
)/2) + 2*a*tan(e/2 + (f*x)/2)^2 + 2*a*tan(e/2 + (f*x)/2)^3 + a*tan(e/2 + (f*x)/2)^4 + a*tan(e/2 + (f*x)/2)^5))
 - (3*c^2*atan((3*c^2*tan(e/2 + (f*x)/2)*(2*A - 3*B))/(6*A*c^2 - 9*B*c^2))*(2*A - 3*B))/(a*f)